

Welcome to Haskell-Torch’s documentation!

Coming soon!

	A walkthrough of the basics
	Basic autograd

	Basic autograd with SGD

	Loading and storing model weights

Indices and tables

	Index

	Module Index

	Search Page

A walkthrough of the basics

We’re going to walk through end-to-end examples of the Haskell-Torch
API. You can get many more examples of full networks in the
repository [https://github.com/abarbu/haskell-torch/tree/master/haskell-torch/src/Torch/Tutorial].

First, we need some extensions. A lot of extensions.

{-# LANGUAGE AllowAmbiguousTypes, ConstraintKinds, ExtendedDefaultRules, FlexibleContexts, FlexibleInstances, GADTs, OverloadedStrings #-}
{-# LANGUAGE PolyKinds, QuasiQuotes, RankNTypes, ScopedTypeVariables, TemplateHaskell, TypeApplications, TypeFamilies #-}
{-# LANGUAGE TypeFamilyDependencies, TypeInType, TypeOperators, UndecidableInstances #-}

This example is somewhat faithful translation of the yunjey basics of
pytorch
tutorial [https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/01-basics/pytorch_basics/main.py]. You
should be able to follow the Haskell and Python versions side by side,
or just read through this example on its own.

module Basics where
import Control.Monad
import Data.Default
import Data.Kind
import Data.Maybe
import Data.Singletons
import Data.String.InterpolateIO
import qualified Data.Vector as V'
import Data.Vector.Storable (Vector)
import qualified Data.Vector.Storable as V
import Foreign.C.Types
import Pipes
import qualified Pipes.Prelude as P
import Torch
import qualified Torch.C.Variable as C
import Torch.Datasets.Vision.CIFAR

Basic autograd

We start with a very low-level example of how to compute a gradient
for some mathematical operations. You’ll notice that all of our
operations are in IO. Right now, we don’t provide a pure
interface. We may in the future. At the end we print the AD graph to
give you a visual feel of what is going on.

ex1 = do

Always a good idea to set the seed so that your results are
reproducible.

 setSeed 0

If we don’t annotate the type parameters here we get into trouble, GHC
won’t know where these values should be stored. You could write
KCuda or KBest instead of KCpu. If your machine doesn’t have a
CUDA device, KCuda will not typecheck. You will notice that all
parameters required to determine the shape, size, type, and device of
networks are passed as type parameters, not runtime values. This is
integral to our goal of trying to eliminate runtime errors.

 s <- stored @KCpu <$> toScalar (float 1)

We need to mark which values need gradients.

 x <- stored @KCpu <$> (needGrad =<< toScalar (float 1))
 w <- needGrad =<< toScalar (float 2)
 b <- needGrad =<< toScalar (float 3)

This package uses a customized version of Interpolate called
InterpolateIO. You will often want to print tensors and this can’t
be done through any pure operations as their storage can change
unexpectedly. Ensuring that tensors can share storage is key to
maintaining good performance and one of the major reasons why we have
no pure API: better to be impure and fast than pure and useless.

 putStrLn =<< [c|X: #{x}
W: #{w}
B: #{b}|]

Now we get to run our actual computation. Notice the funky infix
operators. .* is multiplication between two pure tensors and results
in an tensor wrapped in IO, while ..* takes arguments that are
already in IO.

 y <- pure w ..* pure x ..+ pure b

Usually, you want to compute the gradient with respect to a single
tensor and don’t want to keep the AD graph around for higher order
derivatives.

 backward1 y False False

Again we use InterpolateIO but this time in a more interesting
way. Note that gradient is an impure operation, its result is in
IO, but string interpolation takes care of these values.

 putStrLn =<< [c|dX: #{gradient x} expected 2
dW: #{gradient w} expected 1
dB: #{gradient b} expected 1|]

Finally, a small bonus that doesn’t appear in the original version, we
print the AD graph. This should show it on screen if you have graphviz
installed.

 debuggingPrintADGraph y

Basic autograd with SGD

Now it’s time to do some real optimization!

ex2 = do

Enabling gradients isn’t technically required upfront because they are
enbled by default. If you have code that disables them, this is a good
time to ensure they are on. You might wonder why we even bother
providing such an usafe operation instead of something like bracket
for enabling gradients. We do provide withGrad and withoutGrad
which enable and disable gradients in a region, but it is helpful to
have low level access as well. For example, some existing code may not
be factored out into neat regions.

 unsafeEnableGrad
 setSeed 0

As before, we create some tensors, this time they are random. Note
that we use typed, stored, and sized. These and many similar
operations let you pin down at compile time one or more features of
whatever tensor you are operating on. It’s a great idea to use these
whenever you can. In this case, they are necessary, otherwise the
compiler will not know what size to make our tensors.

 x <- typed @TFloat <$> stored @KCpu <$> sized (size_ @'[10,3]) <$> randn

Note that we don’t need to specify these properties separately,
randn gives us the type parameters to do this in one go. In this
case, we are overspecifying the types as the fact that x is TFloat
and KCpu would propagate to y even without these type
annotations. The size of y is constrained by the size of the linear
layer we define below, it too could be omitted in which case the code
would simply be y <- randn.

 y <- randn @TFloat @KCpu @'[10,2]

You will see gradP in many places. It’s how we create parameters
that are differentiable. The size, type, device, etc. of the
parameters is inferred. A collection of weights can be converted to
parameters, which is really an opaque heterogenous container that can
store tensors of any size. We then create an optimizer, in this can
just a simple SGD with constant learning rate. Note that optimizers
are created for parameters, you may create as many of them as you wish
and even bind the same parameters to multiple optimizers.

 w <- gradP
 params <- toParameters w
 let optimizer = sgd (def { sgdLearningRate = 0.01 }) params

Our first layer and loss. When a function has many type parameters, or
their meaning is ambiguous, we tag them as below. Pure functions which
end in underscores always tag parameter types. Code like linear @3 @2 would simply be unreadable. Many values also have sensible
defaults, you can use def to fill them in.

 let model = linear (inFeatures_ @3) (outFeatures_ @2) w
 pred <- model x
 let criterion = mseLoss y def
 loss <- criterion pred

This has captured an AD graph, which we can walk to compute gradients
and print the state of the model.

 backward1 loss False False
 putStrLn =<< [c|weights & biases:\n#{w}
Loss: #{loss}|]

Now that we have a gradient it’s time to take a step. Notice how
step_ also ends in an underscore, this is to indicate that the
operation is inplace. Functions which end in underscore and are
impure, are inplace operations. These is generally going to be be a
non-destructive version without the underscore, but that is not
guaranteed.

You should see the loss go down!

 step_ optimizer
 pred <- model x
 loss <- criterion pred
 putStrLn =<< [c|Loss after 1 SGD step #{loss}|]
 pure ()

Loading and storing model weights

We plan to have a more comprehensive checkpointing and restarting
solution down the road, but for now, you can save and load model
weights to disk. Whenever we say “loading a model” it always means
that we load the weights of the model, networks are always defined in
Haskell, so there is no way to load them from disk.

ex3 = do
 let v = V.fromList [1,2,3,4]
 -- The resulting tensor is always on the CPU, does not have gradients enabled
 -- and is marked as a leaf. Its type depends on the type of the Vector. Only
 -- Vectors with Foreign.C types are allowed (so CDouble instead of Double,
 -- etc.).
 --
 -- For the result to be useful you must somehow constrain the types. Here we
 -- do so locally using type application but if some downstream consumer of t
 -- constrained its shape we would not need to do so.
 --
 -- This is one of the few interfaces between runtime values and types. It will
 -- error out if the size of the vector is not exactly equal to size of the
 -- tensor.
 t <- fromVector @'TDouble @'[4] v
 -- Alternatively we can use the functions found under the Constraints heading
 -- in Torch.Tensor. These have no runtime component, they just allow you to
 -- constrain the types of tensors easily.
 t' <- typed @'TDouble <$> sized (size_ @'[4]) <$> fromVector v
 -- Or we can say that the new tensor should inherit its properties, aside from
 -- AD status like if gradients are required, from another tensor.
 t'' <- like t <$> fromVector v
 -- A few other ways to create vectors exist, see the "Tensor creation" section
 -- in Tensor.Torch, for example we can make the vector of all 1s that's just
 -- like t.
 t''' <- like t <$> ones
 -- We can also convert tenstors back into vectors.
 v' <- toVector t
 writeModelToFile t "/tmp/woof"
 tl <- like t <$> readModelFromFile "/tmp/woof"
 out t
 out tl
 out =<< t .== tl
 print v'
 print $ v == v'

-- | Input datasets
ex4 = do
 -- Datasets get downloaded and then streamed using Pipes
 (train,test) <- cifar10 "datasets/image/"
 -- Unpack the training set
 (Right trainStream) <- liftM (transformObjectStream rgbImageToTensor) <$> fetchDataset train
 -- Data is loaded on demand, here we read the first data point
 (Just d) <- P.head trainStream
 image <- typed @TByte <$> dataObject d
 label <- dataLabel d
 print $ dataProperties d
 print $ size image
 out label
 -- All datasets can define any custom metadata that they want. CIFAR gives you
 -- a map between indices and text labels so you can interpret the classes.
 metadata <- metadataDataset train
 print metadata
 -- Lets iterate one by one over the first 10 data points shuffling with a
 -- horizon of 1000
 forEachData
 (\d -> do
 print "One data point at a time"
 -- Training code goes here
 putStrLn =<< [c|n: #{dataProperties d} lab: #{dataLabel d}|])
 (shuffle 1000 trainStream >-> P.take 10)
 -- Same if we batch by 64. True means give us a partial batch at the end if our
 -- data isn't divisble by 64.
 forEachData
 (\ds -> do
 print "Batches of 64"
 print $ V'.length ds
 mapM_ (\d ->
 -- Training code goes here
 putStrLn =<< [c|n: #{dataProperties d} lab: #{dataLabel d}|]) ds)
 (batch 64 True (shuffle 1000 trainStream) >-> P.take 3)
 pure ()

-- ex5 does not exist. We don't need anything like custom loaders, you just
-- create pipes. Look at how the datasets are constructed in Torch.Datasets

-- ex6 does not exist. Have a look at Torch.Models.Vision.AlexNet how to load
-- pretrained models.

-- ex7 does not exist. TODO We do not yet have integrated checkpointing
-- support. You can save and load a model but we cannot yet do this with
-- optimizers and cannot do it all for you in one go.

-- Viewing the trace of a computation

ex8 = do
 unsafeEnableGrad
 setSeed 0
 -- Create tensors of shape (10, 3) and (10, 2).
 x <- typed @TFloat <$> stored @KCpu <$> sized (size_ @'[10,3]) <$> randn
 y <- sized (size_ @'[10,2]) <$> randn
 -- Weights and biases for a fully connected layer
 w <- noGradP
 let model = linear (inFeatures_ @3) (outFeatures_ @2) w
 let criterion = mseLoss y def
 params <- toParameters w
 (loss, trace) <- withTracing [AnyTensor x, AnyTensor y] $ do
 pred <- model x
 criterion pred
 putStrLn =<< [c|weights & biases:\n#{w}
Loss: #{loss}|]
 printTrace trace
 printTraceONNX trace [AnyTensor x, AnyTensor y] False 11
 trace' <- parseTrace trace
 rawTrace trace
 summarizeTrace trace'
 showTraceGraph trace False
 -- 1 step of gradient descent
 p <- toParameters w
 step_ (sgd (def { sgdLearningRate = 0.01 }) p)
 --
 pred <- model x
 loss <- criterion pred
 putStrLn =<< [c|Loss after 1 SGD step #{loss}|]
 pure ()

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Haskell-Torch’s documentation!

 		
 A walkthrough of the basics

 		
 Basic autograd

 		
 Basic autograd with SGD

 		
 Loading and storing model weights

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

